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In Griffith's paper [1) a theory was proposed, explaining the rupture of
brittle materials by unlaxial tension in the presence of microscopic cracks.
The basic idea of Griffith's theory concludes, that on the surface of a solid
body forces of tension act, analogous to forces acting on the surface of a
fluid, =nd that the decrease in the potential energy W* of the body caused
by the formation of a crack of length 27 1s compensated by the surface
energy of the crack. In order for a glven crack to grow, 1t is necessary
that the change of free energy of the body W*- ¢ must not increase with

the increase of the crack dimension, 1.e.

S wrx—uy=0 ©.1)
ol
From relation {0.1) a critical parameter for the equilibrium state is
found.
The surface energy of the crack
U = 4T, 0.2)

where 27T, is the energy required for the formation of one length unit of
the crack.

The surface tension 7T,, for sufficlently general assumptlons, may be
consldered constant for a given material.

Griffith obtained the relation determining the critical value of fracture
stress for unlaxial tension of an infinite plate with a line crack of length
21, by forces perpendicular to the line of the crack, in the form

Po = (2ET, / nl)'s, po = (ETy [ nul (1 — v2))'/2 (0.3)
for the conditions of a plane state of stress and of plane strain, respec-

tively. Here F 1s Young's modulus, v 1s Polsson's coefficient.

In the present analysls we attempt to make use of an idea of Griffith for
the construction of a theory for the fallure of brittle solids for the cases

when the assumptlon of either a plane state of stress or of plane straln is
reallzed.
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The theory of fracture here is undestood in the sense, usually taken in
the sclence of the resistance of materials, namely: to find a function
F,(0,, 0,, 0,) such that, in order that the condition F(g,, 0,, 05)=C be
fulfllled, a fallure of the metrial must have occurred.

In the present analysis for the construction of a theory we consider the
followlng hypotheses:

1) The crack propagates, remailning rectilinear.
2) The crack 1s located perpendicular to the surface of the plate.
3) The quantities T, and ! are constants of the material.

For the calculation of the potential energy of deformation it 1is necessary
to overcome the sometlmes significant difficulty of calculation. "In Section
1 equations are derived that allow one to evaluate the potential energy of
an infinite plate with a cut of arbitrary form in the case of an isocropic
state of stress at infinity, provided that the coefficlents of the functions
of Muskhelishvill near an infinitely distant point are known.

In Sections 2 and 3 two cases of crack propagation, that of tension
(Section 2) and that of shear (Section 3) are considered.

1. Derivation of equations for potential energy. The potential energy
of a plate may be computed by Formula

W=—;:Sg[cxgi;+ cy%-i-fxy(%:z-l-%)]dxdy (1.1)
« D

Here, as in the sequel, the notation of [2] is assumed; the thickness of
the plate is assumed equal to unity; the integration in (1.1) is carried out
over the area of the plate. Integrating by parts and taking into account

that 06y | 0Ty Otyy 4 Ooy
5Ty =0 St =0

we obtaln
W= 1/2<§> (021 + T4y?) COS O + (0, + Toyu) sin 0] ds 1.2)

or

W =1/,Re <§> (@ + i) [(0x — iTxy) COS O + (T, — iv,) sin 0] ds  (1.3)
where Re denotes the real part of the complex expression.

It 1s assumed that the work of the forces 1s accomplished only on the
exterior contour.

As 1is well-known [2), the state of stress and deformation of an elastlc,
isotropic medium in a plane problem is determined by two analytic functions
o(z) and §(z) , with which the components of stress and displacement are
assoclated by the relatlons

0+ 0, =29 () +9¢ (@] (e ==+ iy)
6, — 0z + 20ty = 2 397 @) + ¥ (2)] (x=*,fj;f) (1.4)
2 (u+ iv) =%p () — 29 (9 — ¥ (2
where A and p are the Lame coefficients. From Equations (1.4) we have
O — ity = @' () + ¢ (2) — 29" () — ¥ (2)
Ty — B0y = — i [9'(2) +9' (2 + 29" (2) + ¥ (2]

(1.5)
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Taking into account Equations (1.5) and the last equation from (1.4), we
write Equations (1.3) in the form

W =Y~ Re d g () — 297 (2 — b ()] (I9' (9) +97 (D] (cos 8 —

— isin 0) — [z9"(z) + ¥'(2)] (cos 8 4~ i sin 0)} ds (1.6)
If the integration 1s performed on the contour of a circle cf radius 27,
th -
- z = R*27!, (cos O + isin0) ds = — idz
(cos 8 — isin 0) ds = — iRz %dz 1.7

Ir we use (1.7) in Equation (1.6), we obtain
1 VY Y : o, ’
W=-fRebup () — 297D —% () {20 (D +¥ () —
- ;R; 9" (2) + ¢ (z)l} idz (1.8)

The potential energy of an infinite plate may be derived from the poten-
tial energy of a circular plate of radius # by means of passing to the
limit as R = » .

The solution to the problem of determining the state of stress in a clrcu-
lar plate of radius ® with a crack of length 27 (and in general with an
arbitrary configuration) may be obtained by means of a sequence of superpo-
sition of solutions for an infinite plate wilth a crack and for a eontinuous
circular plate (Schwartz's algorithm).

Components of stress and displacement of a circular plate without a crack
are determined by the functions

91 (2) =Tz P, (2) =Tz, (F=Y(0,+0,), ['=—"1;(51+ 0, e?) (1.9)

Here g,, 0, are the values of principal stresses at infinity, o 1s the
angle which the principal axis corresponding to o, makes with the x-axis.

Functions o, (z) and ¢, (z) cause certaln stresses on the contour of the
crack which must be removed by the Introduction of functions

PE@=2 2+ B4 W) =R bR (1.10)

Let 1 be the characteristic dimension of the hole. Using the conformal
mapping z, = z/z , Wwe reduce the problem to the consideration of an infi-
nite plate with a slit of unit length, In this case the coefficlents of the
expansion of functlons Q(z)/ 1, 9 (2z) /1 in powers of 2z are dimen-
sionless varilables.

It follows that coefficlents g,, b, contain factors [**!, This result
may also be obtained from dimenslional considerations.

In order to remove the dlsplacements on the contours of the circle of
radius R , caused by functions o,(z) and §,(z) , we introduce functions

@;(2) = A2+ A28 A28+ ...

Y3 (2) = Bz + B2 + B,z® + . .. (1.11)
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It is required that functions @, (z) + @3(2) and WV, (2) + Vs (2) do
not cause displacements on the ccntours of the circle, then retalning only
terms containing 1® (none higher), we have

A=, =0, dy=— S, A =Ai=...=0 (112
2.1 3~
Blzx—x;—z-al, Bz=B3=---=O
Thus, the unknown functions are (1-13)

P =C+4)z+4.24+24 .., 1|J(z)=(1"+Bl)z+%+”.

Substituting (1.13) in Equation (1.8) and using the theorem of residues
for thelr integratlon, we obtain equation for the potential energy of the
plate weakened by the crack

W = Y,ap-! Re [2 (x — 1) I®*R? -
+ I'T'R? + ( + 1) T'a, + (x — 1) T, + 2T5)] (1.14)

The decrease of potential energy of the plate #* , caused by the forma-
tion of a crack 1s

W* = Y Re [(x + 1) T'a; + (¢ — 1) Th, + 26,1  (1.15)

2. Bilaxisl tension of plate. We consider the tension of an isotropic

elastic plate weakened by a crack of length 2!. The contour of the crack

is free of external stress, and the state of stress at infinity is represented

by tensile stresses ( p = const ) uniformly distributed in a direction making

an arbltrary angle g with the line of the crack; 1in the perpendicular

direction P, = gp . The origin of coordinates is located at the crack center

and the x-axis 1is directed along the crack (Fig.l). In this case functions
#(z) and 0a(z), by which the components of stress

o y P/?VZ; . ?2? displacementzIT:?f:e et?ressed,ihjfe the form
S A-§ V) =5~z
e, fOT
/117p Q(z) = D (z) + 2@ (2) + ¥ (2)
Fig. 1 D) =09 (2, ¥ ()= (2 (2-2)

Here T, I'’ are constants , they characterize the state of stress at infi-
nity, and for the case under conslideration, they have the values

Tr=%Yp({ 4+ a), I = —1Y,p (1 — a) e?ix (2.3)
Passing from functions &(z) and v¥(z) to functions ¢fz) and y(z) and
taking (2.3) into account, we find
9@ =Ts+ g +... $@=T@+7b+... @4
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Here we denote
a, = —Yplf 1 + a — (1 — a) e*2]
by = — Yl [2 (1 + a) — (1 — a) (¥ + ¢-%i2)] (2.5)

If we subatitute the value of g, and », in Equation (1.15) and use (2.3)
we find the decrease in potential energy caused by the presence of the crack

W “"1‘; Do [ + 2 — (1 — a?) cos 2l (2.6)
From condition (0.1) we determine the critical length of the crack @.7)
= A+ D) P [IFa"— (1 = &%) cos 2a] 1= DR’ 27 T+ i

Here in the parantheses are 1ndicated, respectively, the minimal length
of crack for g < 1 when g ~n/2 and for @ > 1 when o =0 .

Introducing the notation a, = P, 0, = ap and taking into account that
p=~FE/2( —v), and for the state of plane stress x = (3 — v)/ (1 + v),
from Expressions (2.7) for I, and [, we obtain

0, =0, = V2ET, /nl (2.8)
For plane strain »x = 3 — 4y and Equation (2.10) has the form
0,=0, = V2T, /nl (1 — V) (2.9)

3. Maxial compression of a plate. We consider the compression of an
elastlc isotropic plate, weakened by a line crack of length 27 . The width
of the crack is so small that it may be neglected ("mathematical slit ). The
contour of the crack is free of stress and the state of stress at infinity
is represented by biaxial compressive stresses ( p = const ) uniformly dis-
tributed in the direction at an arbitrary angle o to the line of the crack,
and P = gp perpendicular to p . The origin of coordinates is placed in
the center of the crack, the x-axis is directed along the line of the crack
(Fig.2). Por certain hypotheses one may assume that with increased load the
crack will be closed all along its edges. The force of friction along the
edge of the crack will be neglected.

Boundary conditions on the contour of the crack are

ot =0, 'cx;=‘r“=0, vt — v =0 (it ) 3.1)

The components of stress and displacement are given in terms of analytic.
functions #(z) and O%z) by the relations

o » //;/ Oy~ ity =00+ Q@ - - T O 3.2)
% Ae i” W+ i) =xD () — QD) —(—DD ) (3.3
N § For sufficiently large |z| functions &(z)
and 0(z) have the form
-1 +] z
X+ iY
Vi OW=T g+ O,

P XY 1
Q@) =T+T oo +06y G4

Fig. 2 (2) 2n (1 4+ %) 2z

Here x, ¥ are components of the principal external stress vector,
applied to the contour of the crack
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F'=—1Yp{+ a), I'=Y,p (1 — a) e ¥* (3,5)
From Formylas (3.2) and (3.3)and from the quantities on the contour of
the crack which are conjugate to them after passage to the boundary values,

as well as using Equations (3.1) and certain transformations, we obtain four
problems of linear relationship

DH)— DO —2W+QO=[0 @ — OO — Q)+ O
KOO +xOO+F QRO+ QOF=xOO+xPO > 204 QO
PO+ PO—QW—R@NF=[® ® + DO —Q@®) —QEI
W) — DPO+QQW—Q@F=—[0@®)— DO+ Q1) — Q@] (3.6)

Solving (3.6) with regard to (3.4), we obtaln

in 20 .
‘D(Z)=L[—(1+a)+i(i-——a)———-—zsm —-i(i—a)sm2a]
‘ Ve (3.7
» i(1 —a)zsin2a , )
Q@) =-"1—(1+a-+2(1—a)cos 20 + ——=——+ i1 —a)sin2a
4 ]/12__ 12
Making use of (2.2), we find from (3.7)
Q@) =Yp[—(1+a)z—"i2 (1 —a)sin 20zt —...] 3.8
P (2) = Yp [2(1 — a) (cos 2a — i sin 20) — Y/,il* (1 — @) sin 20272 — ., .]
It follows that
ay = —1Yplti(1 —a)sin20, &4 =0 (3.9)
Taking into account (3.9) and (3.5) we find from Equation (1.15)
1% I+
W = apl (e 4 ) 3(5‘“"" ) (1 — a)? sin® 20 (3:10)
From relation (0.1) we obtaln the critical crack length
64uT,
= 0T 0P —af s % @11
The minimum length of the crack occurs when o = n/b
4
min I = 64uT, (3.12)

(1 + %) p? (1 — a)?
Denoting o, = p, 0, = qp and substituting u =z/2(1-v), x=(3=v)/(1+),
from (3.12) we find the relation between

the principal stresses o, and ¢, in the
case of a state of plane stress

6,
6, — 0, = + 2 V2ET, /nl (3.13)
_Z\/_S—_L'- SE For the case of plane deformation
il il this relation is

0y —0, =+ 2VIET, /ni (1 —v3) .14

On the basis of Equations (2.8) and
/ (3.13) we can show graphically the rela-

tion between the principal stresses o,
o, for brittle fracture (Fig.3).

Fig. 3 In particular, for brittle fracture
compressive stresses are twice as great
as tenslle. This result is very consist-

ent with experlmental data, obtalned by the authors in test on facture speci-
mens of brittle plastlcs. From the very formulation of Griffith's problem,
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1t 1is clear that results obtained both by Griffith himself (1] and in the
present article, are valld only for the case of the state of homogeneous
stress.

It is completely obvious that the 1investigation of different cases of non-
homogeneous states 1s necessary to be conducted separately for each case,
and it 1s completely possible that the lnstant of collapse will be determined
not only by the magnitude of the stresses but also by the stress gradients.

In his paper [3] Griffith undertook to attempt to construct a theory of
fracture for the state of plane stress. Grifflith proceeded from the solu-
tion to the problem 1n the theory of elasticity for the plane with an ellip-
tical hole. On the boundary of the ellipse the state of stress was uniaxial,,
therefore the maximal tensile stress was determined and compared with the
critical stress, obtained earlier [1]) for the nomogeneous unlaxial state.

In the expression for the maximal stress the values of the principal
stresses at infinity and the angle of inclinatlon of the ellipse were entered.
Minimizing this expression for the angle (roughly, as in the present paper),
Griffith in the end obtained the criterion for strength, whose appllcation
for the case of slmple compression gives the fracture stress which is appro-
ximately elght times larger than the fracture stresses for tension.

The hypothesls formulated in thls paper on the propagatlon of a crack in
1ts plane only, should undoubtedly give excessive values for" the fracture
stresses in the nonsymmetrlcal cases.

Therefore, the results obtained in [3] seem to be incorrect.
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