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In Griffith's paper cl] a theory was proposed, explaining the rupture of 
brittle materials by W&axial tension In the presence of microscopic cracks. 
The basic idea of Qrifflth's theory concludes, that on the surface of a solid 
body forces of tension act, 
fluid, 

analogous to forces acting on the surface of a 
?nd that the decrease ln the potential energy p of the body caused 

by the formation of a crack of length 2& Is compensated by the surface 
energy of the crack. In order for a given crack to grow, It Is necessary 
that the change of free energy of the body w*-U must not Increase with 
the increase of the crack dimension, I.e. 

$w*-U)=O (0.1) 

From relation (0.1) a critical parameter for the equilibrium state is 
found. 

The surface energy of thL crack 

U = 41T, (0.3) 

where 2T, Is the energy required for the formation of one length unit of 
the crack. 

The surface tension T,, for sufficiently general assumptions, may be 
considered constant for a given material. 

Griffith obtained the relation determining the critical value of fracture 
stress for unlaxlal tension of an Infinite plate with a line crack of length 
2t, by forces perpendicular to the line of the crack, In the form 

p,, = @ET,, / nl)1’p, po = @ET, / nl (1 - v2))“Z (0.3) 

for the conditions of a plane state of stress and of plane strain, respec- 
tively. Here E Is Young's modulus, v Is Poisson's coefficient. 

In the present analysis we attempt to make use of an Idea of Griffith for 
the construction of a theory for the failure of brittle solids for the cases 
when the assumption of either a plane state of stress or of plane strain Is 
realized. 
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The theory of fracture here Is undestood In the sense, usually taken in 
the science of the resistance of materials, namely: 
F, (0 

to find a function 

fulf%%I pfailure of ihe metrlal must have occurred. 
) such that In order that the condition F(u, , us, o, ) - C be 

In the present analysis for the construction of a theory we consider the 
following hypotheses : 

1) The crack propagates, remaining rectilinear. 

2) The crack is located perpendicular to the surface of the plate. 

3) The quantities TO and 2 are constants of the material. 

For the calculation of the potential energy of deformation it Is necessary 
to overcome the sometimes significant difficulty of calculation. In Section 
1 equations are derived that allow one to evaluate the potential energy of 
an Infinite plate with a cut of arbitrary for-n in the case of an isotropic 
state of stress at infinity, provided that the coefficients of the functions 
of Muskhellshvlli near an Infinitely distant point are hewn. 

In Sections 2 and 3 two cases of crack propagation, that of tension 
(Section 2) and that of shear (Section 3) are considered. 

1. Darivatlon of l quationa for potantlal anorgy. The potential energy 

of a plate may be computed by Formula 

Here, as In the sequel, the notation of [ 23 is assumed; the thickness of 

the plate is assumed equal to unity; the integration In (1.1) is carried out 

over the area of the plate. Integrating by parts and taking into account 

that 

we obtain 

W = ‘/a $ [( U,U + T,vz)) Cos 8 + (au v +. z,,u) sin 01 CEs (44 

0?2 

W = ‘/,Re 
$ 

(u + iv) [(o, - &,,) cos 0 + (zx?, - iaJ sin 01 ds (1.3) 

where Re denotes the real part of the complex expression. 

It Is assumed that the work of the forces Is accomplished only on the 

exterior contour. 

As Is well-known [ 21, the state of stress and deformation of an elastic, 

isotropic medium In a plane problem is determined by two analytic functions 

m(a) and j(z) > with which the components of stress and displacement are 

associated by the relations 

a, + ‘3, = 2 [cp’ (2) +$m (z = z + iy) 

(JY - 0, + 2iz,, = 2 [Zrp” (Z) + $’ (2) I ( 
1+ 3P 

%=h+lL 1 (1.4) 

2p (u + iv) = q (2) - W6 - 9 (2) 

where A and u are the Lame coefficients. From Equations (1.4) we have 

0% - iz,, = 9’ (2) + cp’) - 3” (4 - $’ (4 
(1.5) 

Tw/ _ io, = - i tcp’ (2) + cp’j + $” (2) + 9’ @)I 
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Taking Into account Equations (1.5) and the last equation from (1.4), we 

write Equations (1.3) In the form 

-__ 
W = Vap-l Re 

+ 
hcp (z) - zcp’ (z) --2~, (z)l { [cp’ (z) +q-ii>l (cos 6 - 

- i sin 0) - [%+f(z) + $‘(z)l (cos 8 + i sin O)} ds (1.6) 

If the integration is performed on the contour of a circle cf radius R, 

then 
i = R2zm1, (cos 0 + i sin 0) ds = - idz 

(cos 8 - i sin 0) ds = - iR2zPdz 

If we use (1.7) in Equation (1.6), we obtain 

(1.7) 

w= - zcp'--_ (z)l {qa@ (z) + l/J' (2) - 

-- ” [cp” (z) + q”(z) I} idz 9 (1.8) 
The potential energy of an Infinite plate may be derived from the poten- 

tial energy of a circular plate of radius A by means of passing to the 

limit as R - m . 

The solution to the problem ofdetermining the state of stress in a clrcu- 

lar plate of radius ,J? with a crack of length 21 (and in general with an 

arbitrary configuration) may be obtained by means of a sequence of superpo- 

sition of solutions for an Infinite plate with a crack and for a eontlnuous 

circular plate (Schwartz's algorithm). 

Components of stress and displacement of a circular plate without a crack 

are determined by the functions 

'pl (2) = rz, tJJI (z) = Yz, (r = 1/4 (a, + 02), I? = - ‘/z (ol + a,) e-2ia) (1.9) 

Here al, uz are the values of principal stresses at Infinity, c Is the 

angle which the principal axis corresponding to u, makes with the x-axis. 

Functions q,(a) and $,(a) cause certain stresses on the contour of the 

crack which must be removed by the Introduction of functions 

92(z) = 
_z+_%+$+ . . . . 92(z) =-$+ -$- +$- $- *.. (1.10) 

Let 1 be the characteristic dimension of the hole. Using the conformal 

mapping sl= s/l , we reduce the problem to the consideration of an lnfl- 

nite plate with-a slit of unit length. In this case the coefficients of the 

expansion of functions cp (zl) / 1, 9 (zJ / I In powers of E are dimen- 

sionless variables. 

It follows that coefficients ok, bt contain factors lh'+l. This result 

may also be obtained from dimensional considerations. 

In order to remove the displacements on the contours of the circle of 

radius R , caused by functions ma(a) and $,(s) , we introduce functions 

(p3(z) =A,z+A2z~tA3z3+. . . 
q3 (z) = B,z + B2z2 + B3z3 + . . . 

(1.11) 
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It Is required that functions Ip2 (z> + (P3 (2) and 92 (z) + 4'3 (z) do 

not cause displacements on the ccntours of the circle, then retaining only 

terms containing z2 (none higher), we have 

Al= ,,“;,,, A2 = 0, A4 =As = . . . = 0 (1.12) 

B /+3- 
1 s a17 B2 =B3=...= 0 

Thus, the unknown functions are (1.13) 

cp (2) = (r + A,) 2 + A$+ + + + . . .) $(z)=(r’+BJz+$+... 

Substituting (1.13) In Equation (1.8) and using the theorem of residues 

for their Integration, we obtain equation for the potential energy of the 

plate weakened by the crack 

W = V2np-’ Re 12 (x - 1) r2R2 + 

+ rTw + (x + i) Pii, + (% - 1) rb, + 2rb;i (1.14) 

The decrease of potential energy of the plate w” , caused by the forma- 

tion of a crack 1s 

W* = 1/2np-1 Re [(x + 1) r’& + (X - 1) rb, + 2&l (1.15) 

2, Blulal tennrion ot plrtr. We consider the tension of an Isotropic 

elastic plate weakened by a crack of length 21. The contour of the crack 

is free of external stress, and the state of stress at infinity Is represented 

by tensile stresses ( p = const ) uniformly distributed In a direction making 

an arbltrary angle o with the line of the crack; in the perpendicular 

direction P, = ap . The origin of coordinates Is located at the crack center 

and the r-axis Is directed along the crack (Flg.1). In this case functions 

+(E) and n(a), by which the components of stress 

aP 

Q 
y PI/// 

\& UP 

+ 
L-L 

s 

+ 

and displacements may be expressed, have the form 

c 21 
cD(z)=yvzL_-;a 

(2.1) 
-1 +i s 

Q (2) = y 
&zy+fFt 

where 

M/P t-2 (2) = 5 (2) + 25’ (2) + F (2) 

Fig. 1 
Q, (2) = cp’ (z), y (z) = 9’ (z) (2.2) 

Here r, r’ are constants , they characterize the state of stress at infi- 

nlty, and for the case under consideration, they have the values 

r = v4p (1 + a), r’ = - Vzp (1 - U) e-Ha (2.3) 
Passing from functions #(z) and Y(Z) to functions cpfr) and t(z) and 

taking (2.3) into account, we find 

cp (z) = rz -+ z-la1 + . . . q tz) = r’ (z) + z-lbb, + . . . (2.4) 
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Here we denote 

- - l/gpP [1 + a - (1 - a) eeial 

b, = -“:/,P 12 (1 + a) - (1 - a) (@ia + e-y] (2.5) 

If we substitute the value of 0, snd b, In Equation (1.15) and use (2.3), 

we find the decrease in potential energy caused by the presence of the crack 

w* = Wp’P [1 + us - (1 - us) co9 24X1 (2.6) 

From condition (0.1) we determine the critical length of the crack 

(2.7) 

1 
= 

32pTo 
11 = 

16j.bTo 
Is = 

16PTo 
n (x + 1) J9 11 + la* - (1 - 04) co.9 2a] n(X+l)P’ fi(x+UPQ 

Here ln the parantheses are lindlbated, respeLtlvely, the minimal length 

of crack for 0 c 1 when a = n/2 and for a > 1 when (L = 0 . 

Introducing the notation (It = p, U2 = up and taking into account that 

p=E/2(1- Y), and for the state of plane stress x = (3 - Y) / (1 + Y), 

from Expressions (2.7) for I, and I, we obtain 

u1 - (T, = 1/2ET, I nl (2.8 

For plane strain x = 3 - 4~ and Equation (2.10) has the form 

u1 = u, = 1/2ET, / nZ(1 - Y”) (2.9) 
3. IJ 0omprurioA of b park. We consider the compression of an 

elastic Isotropic plate, weakened by a line crack of length 21 . The width 
of the crack Is so small that It may be neglected (“mathematical slit”). The 
contour of the crack la free of stress and the state of stress at lnflnlty 
la represented by biaxial compressive stresses ( p = const ) uniformly dls- 
trlbuted ln the direction at an arbitrary angle a to the line of the crack, 
and Pr = ap perpendicular to p . The origin of coordinates Is placed ln 
the center of the crack, the x-axis 1s directed along the line of the crack 
(FL&. 2) . For certain hypotheses one may assume that with Increased load the 
crack will be closed aI along its edges. The force of friction along the 
edge of the crack will be neglected. 

Boundary conditions on the contour of the crack are 

ot=o- ‘c+zz-CO, v+_b-=o 
Y ’ XI/ xl/ (-l<t<O (3.1) 

1/ 

‘Ihe components of stress and displacement are 
@(I) and 

lven ln terms of analytic. 
functions n s) by the relations 9 

* //J/ 

_- 

4p 
UV - iTzxy = @ (2) + 9 (3 - (2 - 2) CD’ (2) (3.2) 

% 
% 

A% < 
-- 

Q 

2p (u’ + iv’) = XQ, ;z) - n G) - (2 - 2) 0’ (2) (3.3) 

For sufficiently large Isi functions @(s) 
and n(r) have the form 

e 
-L 

/ii4 

X 

u)(z)= r - 
X+iY 1 

.& (1 + x1 -y- + 0 W% 

- 
Q (4 F= r 4- 57 f zn (i + X)’ z x + iy A_+ 0 (f%) (3.4) 

Fig. 2 

Here X, Y are components of the principal external stress vector, 
applied to the contour of the crack 
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r = - ‘lrp (i f a), r’=1/g (1 - a) e-e*= (55) 

From Formulas (3.2) and (3.3)and from the quantities on the contour of 
the crack which are conjugate to them after passage to the boundary values, 
as well as using Equations (3.1) and certain transformations, we obtain four 
problems of linear relationshPp 

[@ 0) - a (t) - Q (t) + a (t)]+ = [Q, (t) - & (t) - Q (t) $ B (t)l- 

[x Q (t) Yl- X3 (t) + Q (t) + sz (t)l+ = 1% 0 (t) + x5 (t) + Q (t) d is (Ol- 

[0 (t) + 7P (t) - 8 (t) - az @)I+ = 10 (t) f a (t) - B (t) - B (t)l- 

[a, (t) - a, (t) + 52 (t) - ifi (t)]+ = -[0 (t) - 6 (t) Ji 62 (t) - a (t)]- (3.6) 

Solving (3.6) with regard to (3.4), we obtain 

0 (2) = +[- (1 + a) + i (1 - a) ;g - i (1 -a) sin 2U 1 
Q (z) = -$[- (1 + a) f 2(1 -u)cos 2a + 

i (1 - a) z sin 2u 
(3.1) 

Jfzz - 1z 
+ il(i - a)sin 2u 

I 

Making use of (2.2), we find from (3.7) 

cp (2) = l/&p [- (1 f a) z - 1/,iZz (1 - a) sin 2arx - . . . 3 

$ (2) = i/rp [2 (1 - a) (cos 2u - i sin 2u) - ‘/,iP (1 - a) sin 2az+ - . ..I 
(3.6) 

It follows that 

al = - '/@ri (1 - a) sin 2a, b, = 0 (3.6) 

Taking into account (3.9) and (3.5) we find from Equation (1.15) 

w* = np21* (x -I+ 1) 
32~ 

(1 - a)2 sin2 2u 

From relation (0.1) we obtain the critical crack length 

64Po 
'* = fi (1 + X) p2 (1 -‘o)~ sin2 2a 

The minimum length of the crack occurs when c = n/4 

64P0 
min 1 = a-c (1 + ?c) p2 (1 - a)2 

(3.11) 

Denoting ul= p, ua = up and substituting u =E/2(1-V), W= (3-v)/(l+v), 
from (3.12) we find the relation between 

4' 
the principal stresses 0, and 
case of a state of plane stress 

a, in the 

(J1- az = f 2 Jf2ET,Inl (3.13) 

$, % 
For the case of plane deformation 

this relation Is 
t 

On the basis of Equations (2.8) and 
(3.13) we can show graphically the rela- 
tion between the principal stresses u, 
u, for brittle fracture (Fig.3). 

Fig. 3 In particular, for brittle fracture 
compressive stresses are twice as great 
as tensile. This result Is very conslst- 

ent with experimental data, obtained by the authors In test on facture specl- 
mens of brittle plastics. From the very formulation of Griffith's problem, 
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it is clear that results obtained both by Griffith himself (-11 and in the 
present article, are valid only for the case of the state of homogeneous 
stress. 

It Is completely obvious that the Investigation of different cases ofnon- 
homogeneous states Is necessary to be conducted separately for each case, 
and It Is completely possible that the Instant of collapse will be determined 
not only by the magnitude of the stresses but also by the stress gradients. 

In his paper [3] Griffith undertook to attempt to construct a theory of 
fracture for the state of plane stress. Griffith proceeded from the solu- 
tion to the problem In the theory of elasticity for the plane with an elllp- 
tlcal hole. On the boundary of the ellipse the state of stress was unlaxlal,, 
therefore the maximal tensile stress was determined and compared wlth the 
critical stress, obtained earlier [l] for the nomogeneous unlaxlal state. 

In the expression for the maximal stress the values of the principal 
stresses at infinity and the angle of Inclination of the ellipse were entered. 
Mln.lmlzlng this expression for the angle (roughly, as In the present paper), 
Griffith In the end obtained the criterion for strength, whose application 
for the case of simple compression gives the fracture stress which is appro- 
ximately eight times larger than the fracture stresses for tension. 

The hypothesis fornazlated In this paper on the propagation of a crack in 
Its plane only, should undoubtedly give excessive values for-the fracture 
stresses In the nonsymmetrical cases. 

Therefore, the results obtained In [3] seem to be incorrect. 
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